结构

首先看一下channel的结构定义

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
type hchan struct {
qcount uint // 队列长度,缓冲区中入队的数据长度
dataqsiz uint // 环形队列总长度,即缓冲区总长度
buf unsafe.Pointer // 队列中的数据
elemsize uint16 // chan中元素类型长度(unsafe.Sizeof(type))
closed uint32 // 是否关闭,0,1
elemtype *_type // chan中元素类型
sendx uint // 发送元素的索引
recvx uint // 接受元素的索引(配合sendx和buf,可以得到缓冲区真正的数据)
recvq waitq // 等待接收数据的g队列
sendq waitq // 等待发送数据的g队列

// lock protects all fields in hchan, as well as several
// fields in sudogs blocked on this channel.
//
// Do not change another G's status while holding this lock
// (in particular, do not ready a G), as this can deadlock
// with stack shrinking.
lock mutex // 锁
}

有缓冲channel

对于一个有缓冲的通道,有如下规则:

  1. 发送操作会使通道复制被发送的元素。若因通道缓冲区已满而无法复制,则会阻塞发送操作的goroutine。复制的目的地有两种:①当通道缓冲区无数据且有接收方在等待接收数据时,数据将会被直接复制到接收方持有的内存地址;②否则,复制到通道的buf中
  2. 接收操作会使通道给出一个已发送给它的元素值的副本,如果通道无数据,则会阻塞接收操作的goroutine
  3. 对于同一个元素值来说,把它发送给某个通道的操作,一定会在从该通道接受它的操作完成之前完成

注意:

  1. channel变量是引用类型,因此它的初始值为nil,向一个nil的channel发送或接收数据将会导致永久阻塞
  2. 发送方向通道发送的数据会被复制,至少1次,最多两次。①1次的情形:A 已有接收方阻塞且通道无缓冲数据;B 无缓冲的channel ②2次情形:无缓冲channel不会复制2次,有缓冲channel只要缓冲区有数据,则都会发生两次

happen before

发送操作与接收操作的happen before

  1. 无缓冲channel:接收操作完成都在发送操作完成后
  2. 有缓冲channel:缓冲长度为k,第c个数据接收完成发送在第k+c个数据发送之前

发送操作前后代码的happen before

graph TD;
subgraph 协程 g1
1-->idch1(channel操作)
idch1-->A
A-->X
end
subgraph 协程 g2
2-->idch2(channel操作)
idch2-->B
B-->Y
end

解释:
如上图两个协程 g1 和 g2,channel操作指的是读或者写操作,这里两个协程一读一写。happen-before会使代码执行有以下顺序:

  1. 1 -> B -> Y
  2. 2 -> A -> X
  3. 1 -> A -> X
  4. 2 -> B -> Y
    其他顺序无法保证,比如: A与B、Y,B与A、X,1与2,整体顺序如下图:
    graph TD;
    subgraph 协程 g1
    1-->idch1(channel操作)
    idch1-->A
    A-->X
    end
    subgraph 协程 g2
    2-->idch2(channel操作)
    idch2-->B
    B-->Y
    end
    1-->idch2
    idch2-->A
    2-->idch1
    idch1-->B

数据读写

向通道写数据

  1. 先判断是否有读channel的G阻塞到这里,如果有,则直接将数据复制到等待读数据的G的elem域,并将其标记为_Grunnable,结束

  2. 否则,判断channel中已有数据是否小于缓冲大小,如果小于,则将数据复制到channel的循环队列中,结束

  3. 否则,判断如果是非阻塞,则直接返回false,表示写数据失败

  4. 否则,获取当前g,封装sudog,并把sudog放到channel的sendq域,然后将其标记为_Gwating,等有数据被读取,这里会被唤醒,并执行后续代码,最后返回true

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {

    // ...
    lock(&c.lock)
    // ...
    if sg := c.recvq.dequeue(); sg != nil {
    // 1
    send(c, sg, ep, func() { unlock(&c.lock) }, 3)
    return true
    }
    // 2
    if c.qcount < c.dataqsiz {
    // Space is available in the channel buffer. Enqueue the element to send.
    qp := chanbuf(c, c.sendx)
    if raceenabled {
    raceacquire(qp)
    racerelease(qp)
    }
    typedmemmove(c.elemtype, qp, ep)
    c.sendx++
    if c.sendx == c.dataqsiz {
    c.sendx = 0
    }
    c.qcount++
    unlock(&c.lock)
    return true
    }
    // 3
    if !block {
    unlock(&c.lock)
    return false
    }
    // 4 // Block on the channel. Some receiver will complete our operation for us.
    gp := getg()
    mysg := acquireSudog()
    mysg.releasetime = 0
    if t0 != 0 {
    mysg.releasetime = -1
    }
    mysg.elem = ep
    mysg.waitlink = nil
    mysg.g = gp
    mysg.isSelect = false
    mysg.c = c
    gp.waiting = mysg
    gp.param = nil
    c.sendq.enqueue(mysg)

    goparkunlock(&c.lock, waitReasonChanSend, traceEvGoBlockSend, 3)

    // ...
    releaseSudog(mysg)
    return true
    }

    从通道读数据

  5. 如果channel已关闭,且缓冲区无数据,则直接返回

  6. 否则,判断通道是否有写数据的G阻塞,如果有,则调用recv()函数并直接返回
    2.1 recv() 如果缓冲区无数据,则直接将数据从sudog的G.elem中copy到ep
    2.2 recv() 否则,将缓冲区第一个数据copy到ep中,并将阻塞的G.elem数据copy到缓冲区队列
    2.3 recv() 将sudog.g的状态从_Gwaiting转为_Grunnable

  7. 否则,若缓冲区队列已有数据,则直接从缓冲区复制,直接返回

  8. 否则,若非阻塞,直接返回失败

  9. 否则,获取当前g,初始化sudog,将sudog放至channel.recvq队列中,并将状态转至_Gwaiting,等待唤醒

  10. 唤醒之后,执行后续逻辑,返回接收数据成功

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {

// ...
lock(&c.lock)

// 1
if c.closed != 0 && c.qcount == 0 {
if raceenabled {
raceacquire(c.raceaddr())
}
unlock(&c.lock)
if ep != nil {
typedmemclr(c.elemtype, ep)
}
return true, false
}
// 2
if sg := c.sendq.dequeue(); sg != nil {
recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
return true, true
}
// 3
if c.qcount > 0 {
// Receive directly from queue
qp := chanbuf(c, c.recvx)
if raceenabled {
raceacquire(qp)
racerelease(qp)
}
if ep != nil {
typedmemmove(c.elemtype, ep, qp)
}
typedmemclr(c.elemtype, qp)
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.qcount--
unlock(&c.lock)
return true, true
}
// 4
if !block {
unlock(&c.lock)
return false, false
}

// 5
// no sender available: block on this channel.
gp := getg()
mysg := acquireSudog()
mysg.releasetime = 0
if t0 != 0 {
mysg.releasetime = -1
}
mysg.elem = ep
mysg.waitlink = nil
gp.waiting = mysg
mysg.g = gp
mysg.isSelect = false
mysg.c = c
gp.param = nil
c.recvq.enqueue(mysg)
goparkunlock(&c.lock, waitReasonChanReceive, traceEvGoBlockRecv, 3)

// 6
// someone woke us up
if mysg != gp.waiting {
throw("G waiting list is corrupted")
}
gp.waiting = nil
if mysg.releasetime > 0 {
blockevent(mysg.releasetime-t0, 2)
}
closed := gp.param == nil
gp.param = nil
mysg.c = nil
releaseSudog(mysg)
return true, !closed
}

select

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// runtime/select.go

// A runtimeSelect is a single case passed to rselect.
// This must match ../reflect/value.go:/runtimeSelect
type runtimeSelect struct {
dir selectDir // selectSend、selectRecv、selectDefault 分别代表case里的事件 发送、接收、default
typ unsafe.Pointer // channel type (not used here)
ch *hchan // channel
val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir)
}


func reflect_rselect(cases []runtimeSelect) (int, bool) {
if len(cases) == 0 {
block()
}
sel := make([]scase, len(cases))
order := make([]uint16, 2*len(cases))
for i := range cases {
rc := &cases[i]
switch rc.dir {
case selectDefault:
sel[i] = scase{kind: caseDefault}
case selectSend:
sel[i] = scase{kind: caseSend, c: rc.ch, elem: rc.val}
case selectRecv:
sel[i] = scase{kind: caseRecv, c: rc.ch, elem: rc.val}
}
if raceenabled || msanenabled {
selectsetpc(&sel[i])
}
}

return selectgo(&sel[0], &order[0], len(cases))
}

// Select case descriptor.
// Known to compiler.
// Changes here must also be made in src/cmd/internal/gc/select.go's scasetype.
type scase struct {
c *hchan // chan
elem unsafe.Pointer // data element
kind uint16
pc uintptr // race pc (for race detector / msan)
releasetime int64
}

如上代码,初始时,会遍历select里的所有case,并将这些case放入scase数组,scase数组描述每个case的事件,最后将其作为参数调用selectgo方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
// selectgo 实现了select的功能.
//
// cas0 points to an array of type [ncases]scase, and order0 points to
// an array of type [2*ncases]uint16. Both reside on the goroutine's
// stack (regardless of any escaping in selectgo).
//
// selectgo 返回选中的nscase在数组cas0中的下标,它也是select调用语句中对应位置的序号
// 如果选中的scase事件是channel接收事件,第二个参数表示是否有值发送到接收方
func selectgo(cas0 *scase, order0 *uint16, ncases int) (int, bool) {
if debugSelect {
print("select: cas0=", cas0, "\n")
}

cas1 := (*[1 << 16]scase)(unsafe.Pointer(cas0))
order1 := (*[1 << 17]uint16)(unsafe.Pointer(order0))

scases := cas1[:ncases:ncases]
pollorder := order1[:ncases:ncases]
lockorder := order1[ncases:][:ncases:ncases]

// Replace send/receive cases involving nil channels with
// caseNil so logic below can assume non-nil channel.
for i := range scases {
cas := &scases[i]
if cas.c == nil && cas.kind != caseDefault {
*cas = scase{}
}
}

var t0 int64
if blockprofilerate > 0 {
t0 = cputicks()
for i := 0; i < ncases; i++ {
scases[i].releasetime = -1
}
}

// The compiler rewrites selects that statically have
// only 0 or 1 cases plus default into simpler constructs.
// The only way we can end up with such small sel.ncase
// values here is for a larger select in which most channels
// have been nilled out. The general code handles those
// cases correctly, and they are rare enough not to bother
// optimizing (and needing to test).

// generate permuted order
for i := 1; i < ncases; i++ {
j := fastrandn(uint32(i + 1))
pollorder[i] = pollorder[j]
pollorder[j] = uint16(i)
}

// sort the cases by Hchan address to get the locking order.
// simple heap sort, to guarantee n log n time and constant stack footprint.
for i := 0; i < ncases; i++ {
j := i
// Start with the pollorder to permute cases on the same channel.
c := scases[pollorder[i]].c
for j > 0 && scases[lockorder[(j-1)/2]].c.sortkey() < c.sortkey() {
k := (j - 1) / 2
lockorder[j] = lockorder[k]
j = k
}
lockorder[j] = pollorder[i]
}
for i := ncases - 1; i >= 0; i-- {
o := lockorder[i]
c := scases[o].c
lockorder[i] = lockorder[0]
j := 0
for {
k := j*2 + 1
if k >= i {
break
}
if k+1 < i && scases[lockorder[k]].c.sortkey() < scases[lockorder[k+1]].c.sortkey() {
k++
}
if c.sortkey() < scases[lockorder[k]].c.sortkey() {
lockorder[j] = lockorder[k]
j = k
continue
}
break
}
lockorder[j] = o
}

if debugSelect {
for i := 0; i+1 < ncases; i++ {
if scases[lockorder[i]].c.sortkey() > scases[lockorder[i+1]].c.sortkey() {
print("i=", i, " x=", lockorder[i], " y=", lockorder[i+1], "\n")
throw("select: broken sort")
}
}
}

// lock all the channels involved in the select
sellock(scases, lockorder)

var (
gp *g
sg *sudog
c *hchan
k *scase
sglist *sudog
sgnext *sudog
qp unsafe.Pointer
nextp **sudog
)

loop:
// pass 1 - look for something already waiting
var dfli int
var dfl *scase
var casi int
var cas *scase
var recvOK bool
for i := 0; i < ncases; i++ {
casi = int(pollorder[i])
cas = &scases[casi]
c = cas.c

switch cas.kind {
case caseNil:
continue

case caseRecv:
sg = c.sendq.dequeue()
if sg != nil {
goto recv
}
if c.qcount > 0 {
goto bufrecv
}
if c.closed != 0 {
goto rclose
}

case caseSend:
if raceenabled {
racereadpc(c.raceaddr(), cas.pc, chansendpc)
}
if c.closed != 0 {
goto sclose
}
sg = c.recvq.dequeue()
if sg != nil {
goto send
}
if c.qcount < c.dataqsiz {
goto bufsend
}

case caseDefault:
dfli = casi
dfl = cas
}
}

if dfl != nil {
selunlock(scases, lockorder)
casi = dfli
cas = dfl
goto retc
}

// pass 2 - enqueue on all chans
gp = getg()
if gp.waiting != nil {
throw("gp.waiting != nil")
}
nextp = &gp.waiting
for _, casei := range lockorder {
casi = int(casei)
cas = &scases[casi]
if cas.kind == caseNil {
continue
}
c = cas.c
sg := acquireSudog()
sg.g = gp
sg.isSelect = true
// No stack splits between assigning elem and enqueuing
// sg on gp.waiting where copystack can find it.
sg.elem = cas.elem
sg.releasetime = 0
if t0 != 0 {
sg.releasetime = -1
}
sg.c = c
// Construct waiting list in lock order.
*nextp = sg
nextp = &sg.waitlink

switch cas.kind {
case caseRecv:
c.recvq.enqueue(sg)

case caseSend:
c.sendq.enqueue(sg)
}
}

// wait for someone to wake us up
gp.param = nil
gopark(selparkcommit, nil, waitReasonSelect, traceEvGoBlockSelect, 1)

sellock(scases, lockorder)

gp.selectDone = 0
sg = (*sudog)(gp.param)
gp.param = nil

// pass 3 - dequeue from unsuccessful chans
// otherwise they stack up on quiet channels
// record the successful case, if any.
// We singly-linked up the SudoGs in lock order.
casi = -1
cas = nil
sglist = gp.waiting
// Clear all elem before unlinking from gp.waiting.
for sg1 := gp.waiting; sg1 != nil; sg1 = sg1.waitlink {
sg1.isSelect = false
sg1.elem = nil
sg1.c = nil
}
gp.waiting = nil

for _, casei := range lockorder {
k = &scases[casei]
if k.kind == caseNil {
continue
}
if sglist.releasetime > 0 {
k.releasetime = sglist.releasetime
}
if sg == sglist {
// sg has already been dequeued by the G that woke us up.
casi = int(casei)
cas = k
} else {
c = k.c
if k.kind == caseSend {
c.sendq.dequeueSudoG(sglist)
} else {
c.recvq.dequeueSudoG(sglist)
}
}
sgnext = sglist.waitlink
sglist.waitlink = nil
releaseSudog(sglist)
sglist = sgnext
}

if cas == nil {
// We can wake up with gp.param == nil (so cas == nil)
// when a channel involved in the select has been closed.
// It is easiest to loop and re-run the operation;
// we'll see that it's now closed.
// Maybe some day we can signal the close explicitly,
// but we'd have to distinguish close-on-reader from close-on-writer.
// It's easiest not to duplicate the code and just recheck above.
// We know that something closed, and things never un-close,
// so we won't block again.
goto loop
}

c = cas.c

if debugSelect {
print("wait-return: cas0=", cas0, " c=", c, " cas=", cas, " kind=", cas.kind, "\n")
}

if cas.kind == caseRecv {
recvOK = true
}

if raceenabled {
if cas.kind == caseRecv && cas.elem != nil {
raceWriteObjectPC(c.elemtype, cas.elem, cas.pc, chanrecvpc)
} else if cas.kind == caseSend {
raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc)
}
}
if msanenabled {
if cas.kind == caseRecv && cas.elem != nil {
msanwrite(cas.elem, c.elemtype.size)
} else if cas.kind == caseSend {
msanread(cas.elem, c.elemtype.size)
}
}

selunlock(scases, lockorder)
goto retc

bufrecv:
// can receive from buffer
if raceenabled {
if cas.elem != nil {
raceWriteObjectPC(c.elemtype, cas.elem, cas.pc, chanrecvpc)
}
raceacquire(chanbuf(c, c.recvx))
racerelease(chanbuf(c, c.recvx))
}
if msanenabled && cas.elem != nil {
msanwrite(cas.elem, c.elemtype.size)
}
recvOK = true
qp = chanbuf(c, c.recvx)
if cas.elem != nil {
typedmemmove(c.elemtype, cas.elem, qp)
}
typedmemclr(c.elemtype, qp)
c.recvx++
if c.recvx == c.dataqsiz {
c.recvx = 0
}
c.qcount--
selunlock(scases, lockorder)
goto retc

bufsend:
// can send to buffer
if raceenabled {
raceacquire(chanbuf(c, c.sendx))
racerelease(chanbuf(c, c.sendx))
raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc)
}
if msanenabled {
msanread(cas.elem, c.elemtype.size)
}
typedmemmove(c.elemtype, chanbuf(c, c.sendx), cas.elem)
c.sendx++
if c.sendx == c.dataqsiz {
c.sendx = 0
}
c.qcount++
selunlock(scases, lockorder)
goto retc

recv:
// can receive from sleeping sender (sg)
recv(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2)
if debugSelect {
print("syncrecv: cas0=", cas0, " c=", c, "\n")
}
recvOK = true
goto retc

rclose:
// read at end of closed channel
selunlock(scases, lockorder)
recvOK = false
if cas.elem != nil {
typedmemclr(c.elemtype, cas.elem)
}
if raceenabled {
raceacquire(c.raceaddr())
}
goto retc

send:
// can send to a sleeping receiver (sg)
if raceenabled {
raceReadObjectPC(c.elemtype, cas.elem, cas.pc, chansendpc)
}
if msanenabled {
msanread(cas.elem, c.elemtype.size)
}
send(c, sg, cas.elem, func() { selunlock(scases, lockorder) }, 2)
if debugSelect {
print("syncsend: cas0=", cas0, " c=", c, "\n")
}
goto retc

retc:
if cas.releasetime > 0 {
blockevent(cas.releasetime-t0, 1)
}
return casi, recvOK

sclose:
// send on closed channel
selunlock(scases, lockorder)
panic(plainError("send on closed channel"))
}